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Abstract

We propose two Euclidean minimum spanning tree based clustering algorithms — one a
k-constrained, and the other an unconstrained algorithm. Our k-constrained clustering al-
gorithm produces a k-partition of a set of points for any given k. The algorithm constructs
a minimum spanning tree of a set of representative points and removes edges that satisfy
a predefined criterion. The process is repeated until k clusters are produced. Our uncon-
strained clustering algorithm partitions a point set into a group of clusters by maximally
reducing the overall standard deviation of the edges in the Euclidean minimum spanning
tree constructed from a given point set, without prescribing the number of clusters. We
present our experimental results comparing our proposed algorithms with k-means and the
Expectation-Maximization (EM) algorithm on both artificial data and benchmark data from
the UCI repository. We also apply our algorithms to image color clustering and compare
them with the standard minimum spanning tree clustering algorithm.

Key words: Minimum spanning trees, k-constrained clustering, unconstrained clustering,
representative point sets, standard deviation reduction

1 Introduction

Clustering algorithms for point sets in a metric space (Ed, where d is the number of
dimensions) are often based on Euclidean Minimum Spanning Trees (EMST), in
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which the weight of an edge is the Euclidean distance between its incident points.
The cost of constructing an EMST is O(n2 log n), where n is the number of points.
Such algorithms are known to be capable of detecting clusters with irregular bound-
aries. In these algorithms, the points in the metric space are partitioned by the strate-
gic removal of edges of the EMST, generating subtrees, each of which represents a
cluster.

The inherent cluster structure of a point set is closely related to the objects and/or
concepts that are embedded within that set. In practice, there are two general types
of clustering problems. In the first type, the number of embedded objects can be ac-
quired with the help of application domain experts. Here the input to an algorithm
will specify (in addition to the point set) the number of clusters, k, to be formed. In
the current context, we will call these k-constrained algorithms. In the second type
of problem, information on the number of embedded objects is hidden, and thereby
unavailable as an input to the clustering algorithm. We term such algorithms un-
constrained algorithms. In addition, some algorithms may also include as part of
their input a small number of tuning parameters whose values depend on object
characteristics.

An example application of EMST-based algorithms, and motivating the current
work, is color clustering in web image analysis. Analyzing such images—for ex-
ample in preparation for the extraction of textual content—may be complicated by
the image having complex backgrounds, and often many colors. In this domain,
colors are represented as points in a three-dimensional (e.g., RGB, or HSV) color
space.

In this paper, we present two EMST-based algorithms—one a k-constrained, and
the other an unconstrained algorithm—which address some of the shortcomings of
existing clustering algorithms, such as poor cluster discrimination, or (in the case
of unconstrained algorithms) the generation of an excessive number of clusters.

In Section 2, we review the existing EMST-based clustering algorithms, and other
related work. Sections 3 and 4 present respectively our k-constrained and our un-
constrained algorithm. In Section 5, we provide experimental results comparing our
algorithms with existing ones. Section 6 provides conclusions from our work, and
discusses future directions.

2 Related Work

The simplest k-constrained EMST-based algorithm is to remove k − 1 edges from
the EMST, resulting in k subtrees. Each cluster is the set of points in each subtree.
In the remaining paper, we will refer to this algorithm as SEMST.



In the mid 80’s, Avis [2] found an O(n2log2n) algorithm for the min-max diameter
2 clustering problem. Asano, Bhattacharya, Keil, and Yao [1] later gave an optimal
O(n log n) algorithm using maximum spanning trees for minimizing the maximum
diameter of a bipartition. The problem becomes NP-complete when the number
of partitions is beyond two [9]. Asano also considered the clustering problems in
which the goal is to maximize the minimum intercluster distance. They gave an
O(n log n) algorithm for computing a k-partition of a point set by removing the
k − 1 longest edges from the minimum spanning tree constructed from that point
set [1].

Zahn [16] describes a method to remove inconsistent edges—edges, whose weights
are significantly larger than the average weight of nearby edges—from the EMST.
His definition of inconsistent edges relies on the concept of depth-d neighborhoods,
N1 and N2, for each incident point, v1 and v2, of an edge e. The neighborhood of v1

is the set of edges on paths from v1 having length no greater than d, and excluding
the edge e. Let wN1 be the average weight, and σN1 be the standard deviation, of
neighborhood N1, with similar definitions for N2. He provides several alternative
inconsistency criteria:

(1) w > wN1 + c× σN1

(2) w > max(wN1 + c× σN1, wN2 + c× σN2)

(3)
w

max(wN1, wN2)
> f

The values d, c and f are user-assigned tuning parameters. Each cluster contains the
points within each subtree resulting from the removal of inconsistent edges from
the EMST. We will denote this algorithm as ZEMST.

Eldershaw and Hegland [6] re-examine the limitations of many 2D clustering algo-
rithms that assume that clusters of a point set are essentially spherical, and provide
a broader definition of a cluster based on transitivity: if two points p1 and p2 are
close to the same point p0, they are both members of the same cluster. They present
an algorithm which constructs a graph using Delaunay triangulation, and remove
edges that are longer than a cut-off point. Next, they apply a graph partitioning algo-
rithm to find the isolated connected components in the graph, and each discovered
component is treated as a cluster. Unlike Zahn’s method in which inconsistency is
a locally determined property of an edge, they choose a cut-off point which corre-
sponds to a global minimum.

Bansal, Blum and Chawla [3] introduced an unconstrained algorithm called cor-
relation clustering. The clustering problem they consider is a complete graph in
which each edge is labeled qualitatively as “+” (similar) or “-” (dissimilar). The
objective is to find the clustering that minimizes the number of disagreements with
the edge labels. They proved NP-hardness of the fundamental problem, but povided
approximation algorithms which have been further improved by others [5,4].



More recently, Päivinen [12] proposed a scale-free minimum spanning tree cluster-
ing algorithm which constructs a scale-free network and outputs clusters containing
highly connected vertices. We will refer to this algorithm as SFMST.

Xu Ying, Olman and Xu Dong [14] use an EMST-based algorithm to represent mul-
tidimensional gene expression data. They point out that an EMST-based clustering
algorithm does not have to assume that points within a cluster are grouped around
centers or separated by a regular geometric curve. They describe three objective
functions, and corresponding k-constrained algorithms. The first objective function
constitutes the implementation of SEMST. The second objective function is defined
to minimize the total distance between the center and each data point in a cluster.
This algorithm first removes k− 1 edges from the tree, creating a k-partition. Next,
it repeatedly merges a pair of adjacent partitions and finds its optimal 2-clustering
solution. They observe that the algorithm quickly converges to a local minimum.
The third objective function is defined to minimize the total distance between a
representative point of a cluster and each other point in the cluster. The represen-
tatives are selected so that the objective function is optimized. This algorithm has
exponential worst-case running time.

Xu and Uberbacher [15] partition a gray-level image into homogeneous regions by
constructing an MST from the image. The tree partitioning algorithm minimizes
the sum of the variations of the gray-levels of all subtrees, and the gray-levels of
two adjacent subtrees are required to be significantly different. Each subtree con-
tains several gray-levels and represents a homogeneous region in the image. Other
applications of the MST clustering algorithm in the area of image processing can
be found in [13,7,10]. Lopresti and Zhou [10] suggest an EMST-based color clus-
tering method where each distinct color is a point in the metric RGB color space.
They point out that such algorithms may fail when dealing with textures/dithering,
or when there is a very large number of colors in an image.

3 Hierarchical EMST-based Algorithm (HEMST)

The simple heuristic used in some k-constrained EMST clustering algorithms, i.e.
removing k − 1 longest edges, often does not work well. Figure 1 [16] illustrates
a typical example of the cases in which simply removing the k − 1 longest edges
does not necessarily output the desired cluster structure. This is also a good example
where the nearest neighbor or the single linkage [8] method does not work well.

Fig. 1. Clusters connected through a point.



We now present a more effective k-constrained algorithm, which is a hierarchically
derived EMST-based clustering algorithm on a point set. We will call it HEMST
from now on.

To simplify discussion, in the current context we will refer to an EMST simply as
tree. It can be noted that edge removal from such a tree is a closed operation on
EMSTs since each of the resulting subtrees is also an EMST.

In order to explain the algorithm, we now introduce the notion of a representative
point of a cluster. This is a point in the cluster closest to the geometric centroid of
that cluster. For the sake of algorithmic orthogonality, the points in the input point
set can be considered as representative points, each representing only themselves,
and thus the data contained in tree nodes are representative points. A representative
point has associated with it the set of representative points that it represents. The
weight of a tree edge is the Euclidean distance between its incident representative
points. We furthermore will omit the word representative, when the context is clear.

We will define the following functions in our algorithmic description of HEMST.
All functions returning a set are bolded.

CreateEMST (S) generates an (EMS) tree from point set S

EdgeSet(T ) returns the set of edges in tree T

Points(T ) returns the set of [representative] points in tree T

AvgWeight(T ) returns the average weight of edges in tree T

StdDev(T ) returns the standard deviation of weights of edges in tree T

Centroid(T ) returns the centroid of the [representative] points in tree T

ParEMST(T,E) returns the partition (set of subtrees) resulting from

the removal of edges in set E from tree T

D(p1, p2) returns the Euclidean distance between points p1 and p2

ReprPoint(T ) returns the [representative] point in tree T , being the

point in T that is closest to the centroid of all its points, i.e.,

pi ∈ {T |D(pi, Centroid(T )) = minpj∈T D(pj , Centroid(T ))}

PointSet(p) recursive function generating the original points (in S)

represented directly or indirectly by a [representative] point, p.

PointSet(p) =

{

p if p ∈ S,
⋃

pi∈PointSet(p)PointSet(pi) otherwise.

Let the input point set for the algorithm be S. The tree T (S) is initially parti-
tioned in an unconstrained manner by removing all edges whose weight w >



AvgWeight(T ) + StdDev(T ), resulting in a set of subtrees T = {T1, T2, ...},
each representing an initial cluster. If |T| ≤ k then k−|T| additional edges having
greatest weight are removed from T (S), generating k subtrees, and k corresponding
output clusters. If |T| > k, the centroid of each cluster is used to find a represen-
tative point pi for that cluster, i.e., pi = ReprPoint(Ti). At this stage, this set of
representative points forms a new point set S

′ = {pi|pi = ReprPoint(Ti)}. The
process is recursively repeated until the number of clusters is k. Finally, the orig-
inal point set belonging to each of the k clusters is recursively generated by the
union of the point sets associated with each representative point in the cluster. The
pseudo-code for HEMST is given in Algorithm 1.

Function HEMST(S,k)
Input: Point set S, and required number of clusters, k

Output: Set of k point sets (set of clusters), Sk

T ← CreateEMST(S);
SK ← ∅;
w ← AvgWeight(T );
σ ← StdDev(T );
E← ∅ ; /* E is a set of edges */
forall e ∈ EdgeSet(T ) do

if Weight(e) > w + σ then
E← E ∪ {e};

end
end
Tk ← ParEMST(T,E) ; /* Tk is a set of subtrees */
if |Tk| > k then

P← ∅ ; /* P is a set of representative points */
forall T ∈ Tk do

P← P ∪ {ReprPoint(T )};
end
HEMST(P, k) ; /* Recursive call to HEMST */

else
/* PQ is a priority queue of edges in Tk in order
of weights */
PQ← PriorityQueue(Tk);
for i← 1 to k − |TK| do

E← E ∪ {Dequeue(PQ)};
end
Tk ← ParEMST(T,E);
forall T ∈ Tk do

Sk ← Sk ∪ {PointSet(ReprPoint(T ))};
end
return Sk;

end

Algorithm 1: HEMST



It might be noted that, in a typical scenario, k � |S|. The number of edges
whose weights are greater than the mean by one standard deviation (assuming a
normal distribution, Z(x), of edge weights) is 1 − Z(1) ≈ 0.16 (or slightly less
than one in six). Under this assumption, each representative point will represent
about six points, and the total number of recursion iterations will be in the order of
log6(|S|/k).

Given that each iteration requires an amount of work bounded by O(n2 log n) (find-
ing the minimum spanning tree for the representative points, where n is the number
of points in the (sub)tree), the algorithm has a complexity given by the recurrence







Tn = 6Tn/6 + n2log2n

Tk = 1

yielding a closed form complexity for HEMST of O(n2 log n).

Given the same input as shown in Figure 1, our HEMST algorithm, on the other
hand, will find the appropriate representative points for the desired clusters. Fig-
ure 2 shows the possible distribution of the representative points after a few rounds.
Eventually, if given k = 2, our algorithm will detect the two-cluster structure.

Fig. 2. The representative points of the two clusters connected through a point.

4 Maximum Standard Deviation Reduction Algorithm (MSDR)

The algorithm described next is an EMST-based unconstrained algorithm which
tries to discover the underlying cluster structure in the input point set. It is based,
unlike correlation clustering introduced by Bansal et al. [3], on removing tree edges
that contribute the most to the tree’s overall standard deviation of edge weights.
The underlying idea is that those edges will tend to be inter-cluster rather than
intra-cluster.

4.1 Our MSDR Clustering Algorithm

The algorithm first builds an EMST from the point set S, and removes edges from
this tree one-by-one, partioning the zero-generation tree into successive generations
of sets of subtrees. After i (i ≥ 0) edges removals (i.e. ith generation), the partition



(set of subtrees) is denoted T
(i) = {T

(i)
1 , T

(i)
2 , ..., T

(i)
k }. Let σ(T(i)) represent the

average standard deviation of the ith generation partition, defined as,

σ(T(i)) =

|T(i)|
∑

j=1
|T

(i)
j | · σ(T

(i)
j )

|T(i)|
∑

j=1
|T

(i)
j |

where |T (i)
j | denotes the number of edges in the j th subtree of that generation. The

standard deviation of the partition is the weighted average of the standard deviations
of the weights of the edges in each subtree, weighted by the number of its edges.

The edge to be removed from one of the subtree in T
(i−1), is the one that will

maximize the reduction of the partition standard deviation, in the ith generation,
i.e., T(i) = arg max(∆σ(T(i))), where ∆σ(T(i)) = σ(T(0))−σ(T(i)). The iterative
edge removal process stops when |∆σ(T(i))−∆σ(T(i−1))| < |ε · (∆σ(T(i)) + 1)|.

At this time, a 6th order regression is performed on the successive values of ∆σ(T(i))
as a function of i, and the number of clusters k chosen as appropriate for the input
point set is taken as k = bi′c, where i′ is the value of i where the regression curve
has its first minimum. We find that, in practice, such a point always exists. The final
clusters are formed from the points of the subtrees in the set T

(k).

A function ReduceStdDev(T, T, e) is defined to take a partitioned tree T (i.e., a
set of subtrees), a subtree T within that set, and an edge e within that subtree, and
return a tuple, being the new partition after e is removed from T , and the standard
deviation reduction of the new partition.

The algorithm pseudo-code is given in Algorithm 2.

4.2 Supporting Data Structure

Whereas an EMST is conceptually an undirected tree, the implementation uses a
directed tree whose hierarchy is established (somewhat arbitrarily) during its build-
ing phase. Each node has a collection of child nodes, and (with the exception of the
root) embeds information about its [parent] edge. Each node is therefore the root
of a subtree, and stores information about that subtree. In particular, it stores the
number of nodes, the sum of the edge weights, and the sum of the squares of the
edge weights in the subtree. All these attributes are efficiently (i.e., in linear time)
gathered during the tree building phase. This allows the standard deviations of the
edge weight of the subtrees resulting from an edge removal (required by the MSDR
algorithm) to be calculated efficiently.

Removing edge e from tree T0, results in its being partitioned into two subtrees, T1



Function MSDR(S)
Input: Point set S

Output: Set of k point sets (set of clusters), Sk

T ← CreateEMST(S);
T

(0) ← {T};
i← 0;

repeat
forall T ∈ T

(i) do
∆σmax ← 0;
forall e ∈ EdgeSet(T ) do

(Ttemp, ∆σtemp)← ReduceStdDev (T(i), T, e);
if ∆σtemp > ∆σmax then

∆σmax ← ∆σtemp;
T

(i+1) ← Ttemp;
end

end
end
i← i + 1;

until







σ(T(0)) < σ(T(1)) for i = 1
∣

∣

∣∆σ(T(i))−∆σ(T(i−1))
∣

∣

∣ <
∣

∣

∣ε · (∆σ(T(i)) + 1)
∣

∣

∣ for i > 1
;

f ← PolyRegression(
⋃i−1

j=1 ∆σ(T(j)));
k ← min(j ∈ [1, i− 1]|f ′(j) = 0 & f ′′(j) > 0);
Sk ← ∅;
forall T ∈ T

(k) do
Sk ← Sk ∪ {Points(T )};

end
return SK;

Algorithm 2: MSDR

and T2, as seen in Figure 3.

Fig. 3. T0 is split into T1 and T2.



Based on the following properties:
∑

ei∈T1

ei =
∑

ej∈T0

ej −
∑

ek∈T2

ek − er

∑

ei∈T1

e2
i =

∑

ej∈T0

e2
j −

∑

ek∈T2

e2
k − e2

r

| T1 |=| T0 | − | T2 | −1

the standard deviations of T1 and T2 can be calculated in the following manner,

σ(T1) =

∑

ei∈T1
ei

2

| T1 |
−

(

∑

ei∈T1
ei

| T1 |

)2

σ(T2) =

∑

ei∈T2
ei

2

| T2 |
−

(

∑

ei∈T2
ei

| T2 |

)2

Since all the summations have been pre-computed, the calculation of both standard
deviations can be done in constant time. Considering this fact, and the algorithm
outlined in the pseudo-code, the complexity of the algorithm is O(n2 log n + nk),
where n is the cardinality of the point set, and k is the number of clusters gener-
ated. The only assumption is that the minimum of the regression (∼k) is reasonably
porportional to the number of iterations actually performed (i.e. generations gener-
ated). The first term in the complexity is from the building of the EMST.

5 Experimental Results

We performed three experiments to demonstrate the effectiveness of our proposed
clustering algorithms. In the first experiment, we selected three clustering problems
and compared the two proposed algorithms to k-means and EM respectively. In our
second experiment, we compared our proposed algorithms to the standard EMST
based algorithms—SEMST and ZEMST in image color clustering. In the third ex-
periment we tested our unconstrained MSDR algorithm with datasets from the UCI
repository [11].

5.1 HEMST, k-Means, MSDR, and EM

We selected three relatively difficult clustering problems in this experiment. The
first problem is presented in Figure 4, in which two clusters are desired. Each clus-
ter is formed as a curving irregular shaped line. The second problem shown in
Figure 5 contains two clusters, with one inside the other. The third problem shown
in Figure 6 contains two clusters, each with a non-homogeneous density.



k-means HEMST EM MSDR
Fig. 4. Two clusters formed by two lines.

k-means HEMST EM MSDR

Fig. 5. Two clusters—one inside the other.

k-means HEMST EM MSDR

Fig. 6. Clusters with non-homogeneous densities.

Both HEMST and k-means are k-constrained. The EM algorithm determines the
number of clusters through cross validation. Our MSDR algorithm selects the num-
ber of clusters with the largest second derivative. As we can see in Figure 4, k-
means breaks both clusters and mixes them up into two undesired groups. HEMST
and EM fragment one of the clusters, and only MSDR successfully identifies the
clusters as desired. Similarly, in Figure 5, k-means fragments both the surround-
ing and the central cluster, while HEMST and EM manage to identify the central
cluster, although the surrounding cluster is separated into two. Again, only MSDR
successfully outputs the more appropriate cluster structures. In Figure 6, both k-
means and HEMST tend to group points in a high density region into one cluster.
EM only outputs one cluster, while MSDR outputs three clusters, grouping two
high density regions into one cluster and identifying low density regions as two
clusters on opposite sides. As can be observed, our MSDR algorithm is most suc-
cessful in identifying the desired cluster structures. HEMST is slightly better than
the k-means algorithm.

5.2 Image Color Clustering with EMSTs

We now compare our proposed EMST clustering algorithms to SEMST and ZEMST
on images. All distinct colors in a given image are used to construct a Euclidean
minimum spanning tree in the RGB color space. Each distinct color represents a



node in the tree, and the edges are represented by the Euclidean distances between
the RGB values of two nodes.

As mentioned in earlier sections, given k, SEMST produces clusters by removing
the k − 1 longest edges. ZEMST removes inconsistent edges without a preset k
value. Typical issues each algorithm commonly faces include:

1. For a given k, simply removing the k−1 heaviest edges is not sufficient to obtain
the desired cluster structure.

2. For an unknown k, removing inconsistent edges often produces an unnecessar-
ily large number of clusters for a given input, or leads to undesired partitions.
More problematically, the performance of the algorithm heavily relies on a set of
constants that must be determined by the users.

These problems are illustrated in Figure 7. On the left is the original JPEG image
containing 5328 different colors, even though to human eyes, there are only five
different colors including the background color. The middle image is a result of
color clustering using SEMST with k = 5, which removes the four heaviest edges
to create five clusters. However, to human eyes there are only three colors left in
the image. On the right, the color clusters are created by ZEMST. Even though the
image looks very close to the original, the number of clusters is 51 which is far
greater than the ideal five clusters.

Original image Clusters=5 Clusters=51

Fig. 7. Problems with color clustering.

Next we present the results of our second experiment, comparing our proposed
algorithms to HEMST and ZEMST on a collection of 35 GIF and JPEG images,
many of which contain a large number of colors.

5.2.1 k-constrained Color Clustering

We now report the clustering results using k-constrained EMSTs, i.e. HEMST and
SEMST, on three GIF images shown in Figure 8.

Figure 9 shows the results of our HEMST and the SEMST algorithm on the leftmost
GIF image in Figure 8 containing 128 distinct colors. On the left are the color
clusters produced by our HEMST algorithm, on the right are the clusters produced
by SEMST. When k = 2 the output of our algorithm has managed to catch most
of the objects in the original image, while the output of the SEMST algorithm was



brinsker.gif ipodnano.gif

map.gif

Fig. 8. Image brinsker.gif, ipodnano.gif and map.gif before color clustering.

not able to detect any object in the image. When k = 5, our algorithm catches even
more details of the original image.

HEMST: Clusters=2 SEMST: Clusters=2

HEMST: Clusters=5 SEMST: Clusters=5

Fig. 9. Image brinsker.gif after color clustering using HEMST and SEMST.

Figures 10 and 11 show the clustering results of the two algorithms on the other
two images in Figure 8. The iPod nano image contains 69 distinct colors. With our
technique, when k = 2 it is sufficient to identify all the objects including the text
in the image. The SEMST algorithm was not able to output anything significant.
The map contains 189 distinct colors. With only two colors (k = 2), our algorithm
allows us to see clearly all the street names and the location of the destination. The
SEMST algorithm managed to output a red star which indicates the destination.
When k = 8 (8 representative colors), the output of our algorithm is almost identi-
cal to the original one, while the SEMST algorithm still could not output the street
names and other detailed information on the map.

We compared the two algorithms on 35 different images. Due to space limit, we do
not show all the results. It is apparent that given a cluster number k, our HEMST
algorithm is much more effective than the SEMST algorithm that simply removes



HEMST: Clusters=2 SEMST: Clusters=2

HEMST: Clusters=10 SEMST: Clusters=10
Fig. 10. Image ipodnano.gif after color clustering using HEMST and SEMST.

HEMST: Clusters=2 SEMST: Clusters=2

HEMST: Clusters=8 SEMST: Clusters=8

Fig. 11. Image map.gif after color clustering using HEMST and SEMST.



the k− 1 longest edges from the tree. Our algorithm is able to pick a very few most
representative colors from a large number of colors in the original image, and still
manage to capture all the objects in the images.

5.2.2 Unconstrained Image Color Clustering

In this experiment, the desired number of clusters as well as the structure of color
clusters are unknown to the algorithms. We compared our MSDR algorithm to
Zahn’s EMST clustering algorithm [16]. For Zahn’s algorithm, we applied three
different criteria to detect inconsistent edges in the tree as discussed in earlier sec-
tions: consider nearby edges on one side of the edge, consider nearby edges on both
sides, consider the ratio of the average weights of nearby edges on both sides. Due
to the complex nature of images, our MSDR algorithm selects the cluster number
corresponding to a local minimum of the regression function in this experiment.
For Zahn’s method, we have to choose the size of the neighborhood explored, the
number of standard deviations in excess to the average weight, often differently for
different images in order to obtain better results. For each of the first two criteria,
we choose three different neighborhood sizes: search depth into the tree d = 2, 3, 4,
and three standard deviation factors c = {0.25, 0.75, 1.0}. We did not use the fac-
tor numbers suggested by Zahn because the algorithm could not output anything
interesting with those factors. For the last criterion, we use the same search depths,
and three different ratios f = {1.0, 1.25, 1.5}. Figure 12 shows the original image
of a gift card and the result of our MSDR clustering algorithm. There are 58 colors
in the original image. Our algorithm output eight color clusters and was able to
capture nearly all the objects in the image.

Original Image MSDR: Colors=8

Fig. 12. The original image giftcard.gif and the output of our MSDR algorithm.

Due to space limit, Figure 13 only shows the results of the ZEMST algorithm with
the number of clusters closest possible to our MSDR output using the three different
criteria with different parameter choices. As can be observed, the quality of the
output relies heavily on the parameter choices. In fact, the output cluster number
varies from 2 to 38 as the choice of the parameters varies. In practice, determining
the parameter combinations could be rather challenging. In our experiment, we
tested all parameter combinations on all 35 images. The general observation is that
our MSDR algorithm is able to produce a much smaller number of colors while
preserving objects embedded in all images, compared to the ZEMST algorithm.



Zahn(1):Colors=27
c=1.00, d=2

Zahn(1):Colors=28
c=1.00, d=3

Zahn(1):Colors=27
c=1.00, d=4

Zahn(2):Colors=10
c=1.00, d=2

Zahn(2):Colors=11
c=1.00, d=3

Zahn(2)::Colors=11
c=1.00, d=4

Zahn(3):Colors=13
f=1.25, d=2

Zahn(3):Colors=12
f=1.25, d=3

Zahn(3):Colors=12
f=1.25, d=4

Fig. 13. ZEMST using the 1st, 2nd, 3rd criteria with different parameter choices.

5.3 Comparing MSDR, SFMST and k-means on UCI Datasets

We compared our MSDR clustering algorithm with SFMST and k-means on four
benchmark datasets from the UCI repository [11]. Table 1 gives the summary of
the data sets.

Table 1
Benchmark Data Sets from the UCI Repository

Data Set # of Instances # of Attributes # of Classes

Iris Plants 150 4 3

Pima-Indians Diabetes 768 8 2

Thyroid 215 5 3

Image Segmentation 2100 19 7



For the first three data sets: Iris Plants, Pima-Indians Diabetes and Thyroid, we
compare the MSDR algorithm to several algorithms that have been reported by
Päivinen [12], including the Scale-free MST (SFMST) algorithm, k-means with
two different k values, and the standard MST algorithm. For Image Segmentation
data (not reported by Päivinen), we compare MSDR to k-means with k = 5 and
k = 9. Since all the data sets include class labels, we measure the purity (impurity)
of each cluster using entropy

∑

i∈c−pi log pi, in which c is the total number of
classes of a data set, pi is the probability that an instance belongs to class i in that
cluster. We report the average entropy of clusters created by each algorithm. Lower
entropy values imply purer clusters. To avoid bias towards a larger number of small
clusters, we ignore the clusters containing less than 10 instances or 10% of the
instances in the data set, whichever is smaller, when we compute the entropy.

Table 2 shows the results on the Iris Plants data. Our MSDR algorithm produced
3 non-trivial clusters. The first cluster contains the majority of setosa and only
setosa, which conforms to the fact that setosa is linearly separable from the other
two species. In fact, each algorithm manages to separate setosa from the other two,
however, our MSDR algorithm is the only one that separates versicolo well from
virginica. This also explains the very low (lowest) average entropy of the clusters
produced by our MSDR algorithm.

Table 3 shows the results on the Thyroid data. Our MSDR algorithm produced 2
non-trivial clusters, of which the average entropy is significantly lower than that of
the clusters produced by other MST based algorithms. The first cluster contains the
majority of Normal. Clusters 3 to 6 solely contain the Hypo instances, while with
the other two MST algorithms, Hypo instances can not be identified. k-means, on
the other hand, separated instances of different classes quite successfully.

Table 4 shows the results on the Pima Indians Diabetes data. The instances in this
data set are not well separated using the Euclidean distance measure. Every algo-
rithm failed to successfully separate the instances according to their labels. The
MSDR algorithm produced 4 non-trivial clusters, of which the average entropy is
significantly lower than that of the clusters produced by all other algorithms.

The result of the Image Segmentation data is not reported by Päivinen. We instead
compared MSDR to k-means with k = 5 and k = 9, which are chosen due to
the large size of the data set. As shown in Table 5, our MSDR algorithm managed
to separate all sky instances from the others, and successfully identified most of
the path instances, which the k-means algorithm could not do with the same k
values. The average entropy of the clusters produced by the MSDR algorithm is
comparable to that of the clusters produced by the k-means when k = 5, but much
better than when k = 9.



Table 2
Results on the Iris Data Set. In each section of the table, the first column is the clusters

generated by a clustering algorithm. The last column is the entropy value of each cluster
and the average entropy. The rest of the columns give the number of instances in each class.

Seto Vers Virg Entropy Seto Vers Virg Entropy

SFMST MST

C1 44 1 0 0.15 C1 1 45 30 1.06

C2 1 35 28 1.09 C2 36 0 0 0

C3 0 0 17 0 C3 0 4 7 0.95

C4 13 0 0 0

Avg: 0.41 Avg: 0.50

k-means k-means

(k=5) (k=3)

C1 0 19 2 0.45 C1 33 0 0 0

C2 0 2 27 0.36 C2 0 46 50 0.70

C3 22 0 0 0 C3 17 4 0 0.999

C4 0 29 21 0.98

C5 28 0 0 0

Avg: 0.36 Avg: 0.57

MSDR

C1 42 0 0 0

C2 0 40 0 0

C3 0 3 39 0.37

Avg: 0.12

6 Conclusion

We have demonstrated that our proposed EMST-based clustering algorithms are
very effective when applied to various clustering problems. Our HEMST clustering
algorithm is k-constrained. The algorithm gradually finds a set of k representative
points that serve as an “attractor” to points nearby, and outputs the inherent clus-
ter structure subsequently. We have shown that our algorithm works much more
reliably than the simple SEMST clustering algorithm. Our MSDR algorithm au-
tomatically determines the desired number of clusters. The objective function is
defined to maximize the overall standard deviation reduction. Our algorithm does
not require the users to select and try various parameter combinations in order to



Table 3
Results on the Thyroid Data Set.

Nor Hpe Hpo Entropy Nor Hpe Hpo Entropy

SFMST MST

C1 37 1 2 0.45 C1 118 8 30 0.98

C2 96 20 0 0.66 C2 7 24 0 0.77

C3 0 0 12 0 C3 18 3 0 0.59

Bn 17 5 16 1.43

Avg:0.64 Avg:0.78

k-means k-means

(k=5) (k=3)

C1 64 14 0 0.68 C1 0 16 0 0

C2 0 16 0 0 C2 150 19 8 0.75

C3 86 1 8 0.50 C3 0 0 22 0

C4 0 0 22 0

Avg:0.29 Avg:0.25

MSDR

C1 150 23 6 0.76

C2 0 0 13 0

Avg:0.38

get the desired output.

The main challenge we have encountered when using the MSDR algorithm is run-
time efficiency.We reduced the runtime of the MSDR algorithm significantly by
storing in each node some information that enables the calculation of the stan-
dard deviation of each subtree in constant time. We have demonstrated that our
MSDR algorithm outperforms other clustering algorithms, including SFMST, stan-
dard MST, and k-means on most of the benchmark data sets from the UCI reposi-
tory.

We intend to further explore the potentials of MST based clustering algorithm in
various data mining domains where cluster boundaries are inherently irregular. We
will continue to study the rich properties of the MST clustering techniques and
identify new challenges of applying those techniques in practice.



Table 4
Results on the Pima Indians Diabetes Data Set.

Negative Positive Entropy Negative Positive Entropy

SFMST MST

C1 9 7 0.99 C1 224 138 0.96

C2 15 27 0.94 C2 9 1 0.47

C3 26 12 0.90 C3 9 10 0.998

C4 133 38 0.76

C5 32 37 0.996

Bn 33 31 0.999

Avg:0.93 Avg:0.81

k-means k-means

(k=9) (k=5)

C1 27 23 0.995 C1 102 9 0.41

C2 13 26 0.92 C2 72 43 0.95

C3 8 9 0.997 C3 19 39 0.91

C4 56 20 0.83 C4 47 52 0.998

C5 33 38 0.996 C5 8 9 0.997

C6 23 22 0.996

C7 80 7 0.40

C8 5 6 0.99

Avg:0.89 Avg:0.85

MSDR

C1 215 107 0.92

C2 16 17 0.999

C3 0 11 0

C4 9 2 0.68

Avg:0.65
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